Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Acta Astronautica ; 202:772-781, 2023.
Article Dans Anglais | Scopus | ID: covidwho-2246513

Résumé

On November 26th, 2018, the InSight spacecraft successfully landed on Mars after a 6-month journey. After a long deployment and commissioning phase, the SEIS (Seismic Experiment for Interior Structure) instrument was ready to monitor seismic events on the Elysium Planitia plain on the surface of Mars, coupled with the APSS (Auxiliary Payload Sensor Suite) weather station equipped with a magnetometer, wind sensors, and a pressure sensor. The InSight mission goal is to characterize the deep interior structure of Mars, including the thickness and structure of the crust, the composition and structure of the mantle, and the size of the core. Its nominal duration of two years (2019–2020) has yielded unprecedented results with the detection of the first Martian seismic events ever recorded, and the in-depth characterization of its atmosphere with the best weather station ever deployed on Mars. InSight has collected an outstanding amount of high-quality measurements that the scientific community will spend many years analyzing. The extended mission has started and covers the years 2021 and 2022. This paper will describe the operations of the SEIS experiment on Mars since landing, as well as the challenges of operating this instrument. Energy becomes increasingly limited for payloads on Mars due to a significant amount of dust accumulated on the solar panels and the many dust storms in the Martian atmosphere. A new activity was decided for the extended mission in 2021 which consisted in burying the seismometer cable (or tether) with Martian regolith collected locally using the robotic arm, in order to reduce the seismic noise from that subsystem. Preparation activities, testing, results, associated challenges and lessons learned will be presented. Moreover, the paper will address the challenges faced in carrying out operations with COVID-related constraints, as finding oneself operating a seismometer on Mars from home can be challenging. Finally, management of periods of solar conjunctions, during which communication between Earth and Mars is unavailable, will be addressed. © 2022 IAA

2.
Acta Astronautica ; 2022.
Article Dans Anglais | ScienceDirect | ID: covidwho-2068608

Résumé

On November 26th, 2018, the InSight spacecraft successfully landed on Mars after a 6-month journey. After a long deployment and commissioning phase, the SEIS (Seismic Experiment for Interior Structure) instrument was ready to monitor seismic events on the Elysium Planitia plain on the surface of Mars, coupled with the APSS (Auxiliary Payload Sensor Suite) weather station equipped with a magnetometer, wind sensors, and a pressure sensor. The InSight mission goal is to characterize the deep interior structure of Mars, including the thickness and structure of the crust, the composition and structure of the mantle, and the size of the core. Its nominal duration of two years (2019–2020) has yielded unprecedented results with the detection of the first Martian seismic events ever recorded, and the in-depth characterization of its atmosphere with the best weather station ever deployed on Mars. InSight has collected an outstanding amount of high-quality measurements that the scientific community will spend many years analyzing. The extended mission has started and covers the years 2021 and 2022. This paper will describe the operations of the SEIS experiment on Mars since landing, as well as the challenges of operating this instrument. Energy becomes increasingly limited for payloads on Mars due to a significant amount of dust accumulated on the solar panels and the many dust storms in the Martian atmosphere. A new activity was decided for the extended mission in 2021 which consisted in burying the seismometer cable (or tether) with Martian regolith collected locally using the robotic arm, in order to reduce the seismic noise from that subsystem. Preparation activities, testing, results, associated challenges and lessons learned will be presented. Moreover, the paper will address the challenges faced in carrying out operations with COVID-related constraints, as finding oneself operating a seismometer on Mars from home can be challenging. Finally, management of periods of solar conjunctions, during which communication between Earth and Mars is unavailable, will be addressed.

3.
Differ Equ Dyn Syst ; : 1-14, 2021 Sep 15.
Article Dans Anglais | MEDLINE | ID: covidwho-1427424

Résumé

In this paper, we consider an SEIS epidemic model with infectious force in latent and infected period, which incorporates by nonlinear incidence rates. The local stability of the equilibria is discussed. By means of Lyapunov functionals and LaSalle's invariance principle, we proved the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium. An application is given and numerical simulation results based on real data of COVID-19 in Morocco are performed to justify theoretical findings.

4.
Int J Environ Res Public Health ; 18(17)2021 08 27.
Article Dans Anglais | MEDLINE | ID: covidwho-1379974

Résumé

We investigate the impact of the delay in compulsory mask wearing on the spread of COVID-19 in the community, set in the Singapore context. By using modified SEIR-based compartmental models, we focus on macroscopic population-level analysis of the relationships between the delay in compulsory mask wearing and the maximum infection, through a series of scenario-based analysis. Our analysis suggests that collective masking can meaningfully reduce the transmission of COVID-19 in the community, but only if implemented within a critical time window of approximately before 80-100 days delay after the first infection is detected, coupled with strict enforcement to ensure compliance throughout the duration. We also identify a delay threshold of about 100 days that results in masking enforcement having little significant impact on the Maximum Infected Values. The results therefore highlight the necessity for rapid implementation of compulsory mask wearing to curb the spread of the pandemic.


Sujets)
COVID-19 , Pandémies , Humains , Pandémies/prévention et contrôle , SARS-CoV-2 , Singapour/épidémiologie
SÉLECTION CITATIONS
Détails de la recherche